Semantic-aware Grad-GAN for Virtual-to-Real Urban Scene Adaption

نویسندگان

  • Peilun Li
  • Xiaodan Liang
  • Daoyuan Jia
  • Eric P. Xing
چکیده

Recent advances in vision tasks (e.g., segmentation) highly depend on the availability of large-scale real-world image annotations obtained by cumbersome human labors. Moreover, the perception performance often drops significantly for new scenarios, due to the poor generalization capability of models trained on limited and biased annotations. In this work, we resort to transfer knowledge from automatically rendered scene annotations in virtual-world to facilitate real-world visual tasks. Although virtual-world annotations can be ideally diverse and unlimited, the discrepant data distributions between virtual and real-world make it challenging for knowledge transferring. We thus propose a novel Semantic-aware Grad-GAN (SG-GAN) to perform virtual-to-real domain adaption with the ability of retaining vital semantic information. Beyond the simple holistic color/texture transformation achieved by prior works, SG-GAN successfully personalizes the appearance adaption for each semantic region in order to preserve their key characteristic for better recognition. It presents two main contributions to traditional GANs: 1) a soft gradientsensitive objective for keeping semantic boundaries; 2) a semantic-aware discriminator for validating the fidelity of personalized adaptions with respect to each semantic region. Qualitative and quantitative experiments demonstrate the superiority of our SG-GAN in scene adaption over stateof-the-art GANs. Further evaluations on semantic segmentation on Cityscapes show using adapted virtual images by SG-GAN dramatically improves segmentation performance than original virtual data. We release our code at https://github.com/Peilun-Li/SG-GAN .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Virtual Human Life Simulation and Database: Why and How

In combination with the rapid technical improvements of computers, building large virtual scenes has become a popular field in computer graphics. Often, within real reconstructed city, disappeared building or virtual town, virtual humans populating these scenes are expected to provide the real life feeling. Our specific aim is to populate these scenes with virtual humans in order to offer assis...

متن کامل

A combination of semantic and attribute-based access control model for virtual organizations

A Virtual Organization (VO) consists of some real organizations with common interests, which aims to provide inter organizational associations to reach some common goals by sharing their resources with each other. Providing security mechanisms, and especially a suitable access control mechanism, which enforces the defined security policy is a necessary requirement in VOs. Since VO is a complex ...

متن کامل

A Knowledge Base for Automatic Feature Recognition from Point Clouds in an Urban Scene

LiDAR technology can provide very detailed and highly accurate geospatial information on an urban scene for the creation of Virtual Geographic Environments (VGEs) for different applications. However, automatic 3D modeling and feature recognition from LiDAR point clouds are very complex tasks. This becomes even more complex when the data is incomplete (occlusion problem) or uncertain. In this pa...

متن کامل

Context-Aware Mixed Reality: A Framework for Ubiquitous Interaction

Mixed Reality (MR) is a powerful interactive technology that yields new types of user experience. We present a semantic based interactive MR framework that exceeds the current geometry level approaches, a step change in generating high-level context-aware interactions. Our key insight is to build semantic understanding in MR that not only can greatly enhance user experience through object-speci...

متن کامل

ROAD: Reality Oriented Adaptation for Semantic Segmentation of Urban Scenes

Exploiting synthetic data to learn deep models has attracted increasing attention in recent years. However, the intrinsic domain difference between synthetic and real images usually causes a significant performance drop when applying the learned model to real world scenarios. This is mainly due to two reasons: 1) the model overfits to synthetic images, making the convolutional filters incompete...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1801.01726  شماره 

صفحات  -

تاریخ انتشار 2018